10,349 research outputs found

    Natural frequency prediction for laminated rectangular plates with extension-bending or extension-twisting and shearing-bending coupling

    Get PDF
    This article presents closed form natural frequency solutions for two classes of mechanically coupled laminate with: extension-bending or; extension-twisting and shearingbending. Details on the derivation of these two laminate classes are given; all of which contain combinations of standard ply angles, e.g. +45, -45, 0 and 90°. Upper and lower bounds on the non-dimensional natural frequencies are shown graphically for each class of laminate over a range of aspect ratios. Finally, differences are highlighted between these bounds and others obtained by the simplifying assumption that the two laminate classes contain only cross plies or angle plies, respectively

    Oblique focus ICCD laboratory evaluation

    Get PDF
    An oblique focus intensified charge coupled device (ICCD) was constructed and operated in a vacuum system. Special gratings were obtained and an optical system set up to try to model a candidate UV spectrometer (Milieu Interstellaire et Intergalactique-MISIG), and to produce small enough images to test the theoretical subpixel resolution capability of the ICCD system. The efforts were only partly successful. Based on the results, a similar detector was built and flown successfully on a Princeton rocket program

    Observations of interstellar zinc

    Get PDF
    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation

    nPI Resummation in 3D SU(N) Higgs Theory

    Full text link
    We test the utility of the nPI formalism for solving nonperturbative dynamics of gauge theories by applying it to study the phase diagram of SU(N) Higgs theory in 3 Euclidean spacetime dimensions. Solutions reveal standard signatures of a first order phase transition with a critical endpoint leading to a crossover regime, in qualitative agreement with lattice studies. The location of the critical endpoint, x sim 0.14 for SU(2) with a fundamental Higgs, is in rough but not tight quantitative agreement with the lattice. We end by commenting on the overall effectiveness and limitations of an nPI effective action based study. In particular, we have been unable to find an nPI gauge-fixing procedure which can simultaneously display the right phase structure and correctly handle the large-VEV Higgs region. We explain why doing so appears to be a serious challenge.Comment: 24 pages plus appendices, 8 figure

    DLAs and Galaxy Formation

    Full text link
    Damped Lyman-alpha systems (DLAs) are useful probes of star formation and galaxy formation at high redshift. We study the physical properties of DLAs and their relationship to Lyman-break galaxies using cosmological hydrodynamic simulations based on the concordance Lambda cold dark matter model. Fundamental statistics such as global neutral hydrogen (HI) mass density, HI column density distribution function, DLA rate-of-incidence and mean halo mass of DLAs are reproduced reasonably well by the simulations, but with some deviations that need to be understood better in the future. We discuss the feedback effects by supernovae and galactic winds on the DLA distribution. We also compute the [C_II] emission from neutral gas in high-z galaxies, and make predictions for the future observations by ALMA and SPICA. Agreement and disagreement between simulations and observations are discussed, as well as the future directions of our DLA research.Comment: 15 pages, 10 figures. Invited brief review for Modern Physics Letters A, in pres

    Action and Energy of the Gravitational Field

    Get PDF
    We present a detailed examination of the variational principle for metric general relativity as applied to a ``quasilocal'' spacetime region \M (that is, a region that is both spatially and temporally bounded). Our analysis relies on the Hamiltonian formulation of general relativity, and thereby assumes a foliation of \M into spacelike hypersurfaces Σ\Sigma. We allow for near complete generality in the choice of foliation. Using a field--theoretic generalization of Hamilton--Jacobi theory, we define the quasilocal stress-energy-momentum of the gravitational field by varying the action with respect to the metric on the boundary \partial\M. The gravitational stress-energy-momentum is defined for a two--surface BB spanned by a spacelike hypersurface in spacetime. We examine the behavior of the gravitational stress-energy-momentum under boosts of the spanning hypersurface. The boost relations are derived from the geometrical and invariance properties of the gravitational action and Hamiltonian. Finally, we present several new examples of quasilocal energy--momentum, including a novel discussion of quasilocal energy--momentum in the large-sphere limit towards spatial infinity.Comment: To be published in Annals of Physics. This final version includes two new sections, one giving examples of quasilocal energy and the other containing a discussion of energy at spatial infinity. References have been added to papers by Bose and Dadhich, Anco and Tun

    A Survey of Metal Lines at High-redshift (I) : SDSS Absorption Line Studies - The Methodology and First Search Results for OVI

    Get PDF
    We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) Data Release 3(DR3), focusing on finding intervening absorbers via detection of their OVI doublet. Here we present the search algorithm, and criteria for distinguishing candidates from spurious Lyman α\alpha{} forest lines. In addition, we compare our findings with simulations of the Lyman α\alpha{} forest in order to estimate the detectability of OVI doublets over various redshift intervals. We have obtained a sample of 1756 OVI doublet candidates with rest-frame equivalent width > 0.05 \AA{} in 855 AGN spectra (out of 3702 objects with redshifts in the accessible range for OVI detection). This sample is further subdivided into 3 groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. 69 of these reside at a velocity separation > 5000 km/s from the QSO, and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known OVI absorbers at redshifts beyond z$_{abs} > 2.7 substantially.Comment: 41 pages, 10 figures, 2 tables, accepted by AJ. This is a substantially altered version, including an appendix with details on the validity of the search algorithm on one pixel rather than binning. Also note that M. Pieri was added as autho

    Canonical Quasilocal Energy and Small Spheres

    Get PDF
    Consider the definition E of quasilocal energy stemming from the Hamilton-Jacobi method as applied to the canonical form of the gravitational action. We examine E in the standard "small-sphere limit," first considered by Horowitz and Schmidt in their examination of Hawking's quasilocal mass. By the term "small sphere" we mean a cut S(r), level in an affine radius r, of the lightcone belonging to a generic spacetime point. As a power series in r, we compute the energy E of the gravitational and matter fields on a spacelike hypersurface spanning S(r). Much of our analysis concerns conceptual and technical issues associated with assigning the zero-point of the energy. For the small-sphere limit, we argue that the correct zero-point is obtained via a "lightcone reference," which stems from a certain isometric embedding of S(r) into a genuine lightcone of Minkowski spacetime. Choosing this zero-point, we find agreement with Hawking's quasilocal mass expression, up to and including the first non-trivial order in the affine radius. The vacuum limit relates the quasilocal energy directly to the Bel-Robinson tensor.Comment: revtex, 22 p, uses amssymb option (can be removed
    corecore